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ABSTRACT
Deep learning(DL) techniques attract people from various fields
with superior performance in making progressive breakthroughs.
To ensure the quality of DL techniques, researchers have been work-
ing on testing and verification approaches. Some recent studies
reveal that the underlying DL operators could cause defects inside
a DL model. DL operators work as fundamental components in DL
libraries. Library developers still work on practical approaches to
ensure the quality of operators they provide. However, the variety
of DL operators and the implementation complexity make it chal-
lenging to evaluate their quality. Operator testing with limited test
cases may fail to reveal hidden defects inside the implementation.
Besides, the existing model-to-library testing approach requires
extra labor and time cost to identify and locate errors, i.e., devel-
opers can only react to the exposed defects. This paper proposes
a fuzzing-based operator-level precision testing approach to esti-
mate individual DL operators’ precision errors to bridge this gap.
Unlike conventional fuzzing techniques, valid shape variable in-
puts and fine-grained precision error evaluation are implemented.
The testing of DL operators is treated as a searching problem to
maximize output precision errors. We implement our approach in
a tool named Predoo and conduct an experiment on seven DL oper-
ators from TensorFlow. The experiment result shows that Predoo
can trigger larger precision errors compared to the error threshold
declared in the testing scripts from the TensorFlow repository.

∗Chunrong Fang is the corresponding author of this paper.
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1 INTRODUCTION
Deep learning(DL) techniques boost research progress in various
fields including computer vision [22], medical diagnosis [2], and
even software testing [43]. Developers make use of available DL
libraries to build, train and deploy DL applications. Multiple DL
libraries grant developers more direct access to DL techniques on
devices with different computation capabilities. Mature DL applica-
tions are expected to show competitive and stable performance in
handling tasks. However, researchers have found that these appli-
cations could be vulnerable to small perturbations [40]. According
to some empirical studies [41] [17], DL libraries could also raise de-
fects in applications. Since developers know little about DL libraries’
implementation, it becomes challenging to avoid such risks.

As an effective form of machine learning [10], DL techniques
are integrated in more DL libraries, including TensorFlow [1], Py-
Torch [27], and the Microsoft Cognitive Toolkit(CNTK) [39]. Mean-
while, new DL libraries like MindSpore and MNN [18] keep being
developed to extend use scenarios, ranging from high-performance
servers to resource-limited IoT devices. In DL libraries, algorithms
for processing multi-dimensional inputs, i.e., tensors, are imple-
mented as callable DL operators. The DL operator discussed in this
paper is essentially an API call to perform tensor manipulations.
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When performing an inference task, these operators are responsi-
ble for processing and transforming tensors to produce the output.
Since scenarios offer different computing capabilities, e.g., data
representation ability and hardware performance, such differences
could introduce computational errors to operator behaviors. Most
DL operators perform complex and non-linear transformations,
which often cause precision-related errors [8]. Besides, library de-
velopers keep optimizing the operator’s implementation, e.g., re-
ducing iteration times of Newton’s method, to compute faster.

One of the main challenges in testing numerical operators is
to provide the testing oracle. The precision error makes it hard to
determine whether the produced output is correct because it might
fluctuate. Comparing the output with the result produced under in-
finite precision, i.e., absolute error, is an option to solve it. Because
it is impractical to provide the result of infinite precision in auto-
matic testing, the output from a higher-precision instance is used
instead [12]. Correspondingly, absolute tolerance(atol) and relative
tolerance(rtol) are metrics that widely adopted to evaluate precision
errors. However, it remains a problem to give these metrics appro-
priate values. According to our study on testing practices from
library developers, different values are used when testing different
operators, indicating that tolerance concretization requires expert
knowledge about the operator. An alternative solution followed by
library developers is to collect the output from an equivalent pro-
gram that serves the same functionality for reference and quantify
the difference, i.e., relative error [26].

Another challenge in testing DL operators is to generate suffi-
cient test input. Unlike other primitive data types, tensor holds a
rather complex structure in its shape. Library developers prepare at
most dozens of tensor inputs in the testing scripts. However, these
hand-written tests’ effectiveness is limited, considering the test
input scale and output evaluation. Some researchers overcome this
problem by collecting intermediate output when investigating DL
models. As enough test inputs for the DL model are provided, they
can collect sufficient test data for each operator inside the model.
By detecting the DL model’s misbehavior and tracing inconsistency
patterns, researchers manage to locate defects in the underlying
operators [30]. However, from the perspective of software engineer-
ing, DL libraries should first be packaged and released, then model
developers can have access to these encapsulated operators. There-
fore, model construction is a practice out of the library development
lifecycle. This kind of model-to-library approach requires extra cost
for model construction and intermediate output extraction.

To address the challenges mentioned above, we introduce a
fuzzing-based precision testing approach and implement it in a
tool named Predoo to maximize precision error found on DL opera-
tors. Predoo extends numerical precision testing to DL operators,
which processes the more complex tensor input. Mutation meth-
ods are introduced to implement mutation-based input generation,
which helps provide many test inputs. Unlike conventional fuzzing
techniques that generate semi-valid test inputs to trigger excep-
tions or crashes [34], Predoo follows the strict shape constraint of
DL operators to generate valid tensors. Also, precision errors are
different from exceptions or crashes, i.e., a DL operator can produce
an output, although it is hard to tell its correctness. To improve test
efficiency, Predoo implements three guiding metrics. With these

metrics, Predoo prioritizes inputs that trigger larger errors. To eval-
uate the effectiveness and efficacy of Predoo, we experiment on
seven DL operators. We compare errors found by Predoo against the
built-in threshold and CRADLE. The result shows that Predoo can
trigger precision errors one order of magnitude larger on average.
Predoo is the first precision testing work that directly investigates
DL operators to the best of our knowledge. The main contributions
of this paper are as follows:

1) study current test implementation from DL libraries to sum-
marize test practices and goals in operator testing, including
the preparation of input and the evaluation of output. Fur-
thermore, we point out limitations and potential risks.

2) propose a precision-error-guided fuzzing approach to test
DL operators. We refine the precision-related metrics in
evaluating tensor outputs, with which we demonstrate the
ability of our approach to finding error-inducing inputs.

3) conduct a comprehensive experiment on seven widely used
DL operators fromTensorFlow and compare the result against
the built-in threshold and CRADLE to illustrate its efficacy
and efficiency.

4) public the source code of this tool and release our test data
to help other researchers conduct relevant numeric error
analysis in DL libraries.

2 BACKGROUND
Precision-related errors caused by floating-point computation ap-
proximation may impact the functionality of an application, espe-
cially for numerical computation programs. According to a study
on numerical software libraries [9], numerical bugs account for 32%
of all the examined bugs. To figure out the impacts of floating-point
values, researchers work on approaches to estimate round-off er-
rors [33], identify maximized errors [12] and capture arithmetic
exceptions [21] by employing verification and testing techniques.
Operators in DL libraries face similar challenges because they use
non-linear algorithms to process the more complex shape-variable
inputs. Besides, DL operators allow practitioners to customize input
precision and operator precision. The input precision indicates the
precision of elements inside the tensor, while the operator precision
determines which precision the operator uses to store variables and
finish the computation. For DL applications, detailed implemen-
tation considers the tradeoff between performance and precision.
However, it remains unclear about the influence.

2.1 Precision Testing
In precision testing, error implies the difference between the pro-
duced output and the expected value, i.e., test oracle. Unless other-
wise specified, the error mentioned in this paper refers to precision
error. Formal error analysis can be complicated and requires ex-
pert knowledge about the implemented operator, which guarantees
an operator’s safety. Meanwhile, the inherent computational error
brought by finite-bit representation in computer programs raises
people’s concern about its impact, especially for floating-point nu-
merical computation programs. Due to such errors’ uncertainty
and unpredictability, it is difficult to determine an output’s cor-
rectness. As a walkaround, researchers put forward metrics that
help estimate whether the disturbance in the output is within an
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acceptable range, i.e., errors can be bounded [16]. Formally, it can
be described as | P(i) − Oi |< ε , where P denotes the numerical
program, i denotes an input, Oi denotes the expected output for
input i , and ε denote the acceptable range. Input i generation, oracle
Oi approximation, and error bound ε definition to become three
tasks in precision testing.

Input generation. Random testing [14] provides random, inde-
pendent inputs to a program. The chance of hitting error-prone
inputs depends on the magnitude of the defect rate. In consequence,
it could be inefficient to find an error-inducing input. To bridge
this gap, adaptive random testing is proposed. Adaptive random
testing selects the farthest input from executed test inputs. How-
ever, random testing techniques cannot activate the profound logic
because it is a structure unaware. Symbolic execution [32] takes
program implementation into account when generating a new in-
put. Though it could be efficient in exposing different execution
paths, it requires additional access to the source code. Meanwhile,
extra time will be spent analyzing variables and data structures.

Oracle approximation. There are two kinds of test oracles,
implicit and explicit [5]. Implicit test oracles, including runtime
exceptions and crashes, do not require domain-specific knowledge
to distinguish between correctness and incorrectness. For a nu-
merical program, such anomalies are sufficient to prove the pres-
ence of critical defects. However, implicit test oracles cannot reveal
correctness-related issues. To achieve this, researchers make use
of alternative yet independent programs or multiple version pro-
grams to provide explicit oracles, i.e., differential testing [24] or
regression testing [36]. Let P

′

denote such a function-equivalent
program, formally we have P

′

, P , while P
′

(i) = P(i) is expected.
Unfortunately, for numerical programs, even if we find such a P

′

,
directly judging whether the output is equal is not applicable.

Error bound definition. An appropriate error bound ε helps
identify fine-grained value check between P

′

(i) and P(i). In prac-
tice, the external environment and internal implementation make
it a complicated task to determine ε . The external environment
limits the capacity of finite-bit representation in implementation,
impacting the propagation of the precision error. Thus there are no
universal criteria to define the error bound. If the configured ε is
too large, it cannot expose potential defects. On the contrary, if it
is too small, time would be spent on non-serious problems. There-
fore, instead of explicitly defining the error bound ε , researchers
transform it into a searching problem [44]. Let I denote the input
space, T denote the test set produced by the searching strategy S,
T ⊆ I, Ei denote the error for input i , i ∈ T, the proposed approach
S aims to find input α that can maximize precision error.

T = S(P , I),∀i ∈ T,Eα =max(Ei )

Following this idea, most precision testing works on effective
strategies S to explore the input space, to maximize error.

2.2 Deep Learning Operators
DL operators provide vital support for DL-related tasks because DL
models rely on them to perform concrete learning and inference
tasks [7]. Operators need to update the hyper-parameter during
the training phase, and the output is commonly considered some
probability distribution. If the intermediate output changes, the
result given by the DL model can be different. However, as the

floating-point operation is implemented in the DL libraries, it is
difficult for a model developer to tell whether the DL operator’s
output is sufficient to cause the difference in the final result. Mean-
while, the external environment could be different during training
and deployment, where support from underlying hardware differs.
We investigate three common categories of DL operators widely
used in constructing DL models.

The convolution operator is efficient in describing transforma-
tions that apply the same linear sub-region transformations since
it requires much less floating-point operations than the straightfor-
ward matrix multiplication algorithm. However, it still requires a
lot of floating-point operations to implement the arithmetic. For a
CNN [20] processing the image classification task, if a convolution
kernel contains 4 elements (2×2), and the size of the corresponding
output is 28 × 28, then 28 × 28 × 5 = 3920 floating-point operations
are required to implement this operator. As is mentioned above,
floating-point operations could be error-prone. Thus the feature
map represented by the output of the convolution operator should
be carefully considered. Besides, there could be multiple implemen-
tations for a single DL operator in the same DL library, and each of
them is independent of others. For example, in TensorFlow, there
are approximately ten individual code implementations related to
conv2d using different processors, e.g., CPU, GPU, and various data
types, e.g., float16, float32, float64, etc.

The pooling operator helps to aggregate the statistics of the fea-
tures at nearby locations, which helps judge whether an expected
feature is present or not. Similar to the convolution operator, the
pooling operator amplifies features in a small local area. Neverthe-
less, it does not keep a record of the accurate location of it. For
example, if themax_poolinд operator is employed, it will assign
the maximum value to all elements in a rectangular neighborhood
in implementation. Intuitively, the operator does not care much
about each element’s accuracy since it prefers the maximum value
shown by a local region of the output.

Other nonlinear operators like ReLU [38], sigmoid, tanh, soft-
max, also aim to adapt with variety of data. Comparing to linear
operators, these non-linear operators work to map the input to
a particular range. For example, the sigmoid operator produces
output between the range [0, 1].

2.3 Motivation
DL library testing attracts researchers because recent work indi-
cates that some DL model defects reside in components of the
underlying DL libraries, i.e., DL operators. To better explain our
motivation and illustrate our approach, we collect operator testing
scripts, 353 in total, from TensorFlow, a popular DL library1. To bet-
ter understand current testing practices, we study operator testing
implementation from DL library developers from input generation
and output estimation perspectives. These findings are discussed
with and confirmed by our enterprise collaborators, who are also
library developers. We summarize existing limitations in testing
DL operators and explain our intuition in building a fuzzing-based
DL operator testing approach.

Test inputs preparation. DL operators do not share much sim-
ilarities in the input parameter list except that they process tensors,

1https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/kernel_tests
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e.g. conv2d takes additional parameters including height, strides,
padding, and filter, while relu takes no additional parameters. Un-
less otherwise specified, the input refers to the tensor input a DL
operator takes. Other parameters are declared using primitive data
types, e.g., integer, string. Testing techniques for these primitive data
types are relatively mature, but they cannot process shape-variable
tensor inputs. According to the study, DL library developers con-
struct several or dozens of inputs by either declaring a fixed batch
of random data or manually providing them.

Test outputs estimation. Inspired by the study of oracle ap-
proximation in [26], we try to find outmetrics library developers use
to determine the correctness of a DL operator. Most DL operators
make use of assertions to check whether the test case should pass.
Shape check method assertShapeEqual and value check method
assertAllClose are two main assertions in estimating the correctness.
DL library developers also provide specified atol and rtol. Formally,
the result is expected to satisfy the following constraint.

| P
′

(i) − P(i) |< rtol∗ | P
′

(i) | +atol

According to the study, library developers are more likely to cus-
tomize the tolerance value. Even for the same operator, library de-
velopers could specify different tolerance value when testing with
different finite-bit representation, i.e., float32, float64. An appropri-
ate setting of the tolerance value may require expert knowledge
of a DL operator. Meanwhile, current tolerance is used to check
element-wise value errors.

Besides, we find DL operator testing practices that are different
from that of conventional numerical program testing.

1) DL operators can take format-variable tensors as inputs. e.g.,
conv2d can take tensors in channel_first format, i.e., NCHW,
aswell as in channel_last format, i.e., NHWC. In consequence,
it is difficult to define and calculate distance between test
inputs, which makes adaptive random testing not applicable.

2) DL operators can take inputs represented by different finite-
bit length, i.e., for floating-point values, the input can be of
float16, float32, and float64.

3) DL operators can store variables and process intermediate
computation with values represented by different finite-bit
length, i.e., DL operators can use float16, float32, float64 to
store and process variables.

4) DL operators can run on different hardwares, e.g., CPU and
GPU. The implementation is different. Some testing practices
fail to take hardware variety into consideration, e.g., conv2d
is configured to always run in GPU mode if possible.

Model developers rely on these DL operators to implementmodel
construction, model training, model inference, and model deploy-
ment. Anomalies observed during these activities are reported to
the DL library development team by model developers. Inspired
by such a practice, some recent work follows the model-to-library
routine to identify and locate operator defects [30] [13] [23]. An em-
pirical study on TensorFlow [41] also indicates that library-related
issues are the main reason for bugs in DL applications. From the
perspective of software engineering, operator-level testing can be
done by library developers. If a defect is found, library developers
can fix it before a release, saving model developers from running
into these defects when constructing their DL models.

3 APPROACH
To address the issues mentioned above, we are motivated to 1)
implement a generic approach to test various DL operators; and
2) propose a more direct approach to implement operator-level
testing. We propose Predoo, a fuzzing-based approach to implement
precision testing for DL operators. Unlike conventional fuzzing
techniques, Predoo generates valid inputs instead of semi-valid
inputs considering the strict shape constraint of the input. When
evaluating the output, Predoo uses precision error instead of crashes
to implement fine-grained analysis for DL operators.

Figure 1 illustrates its workflow. Specifically, a shape resolver
is introduced to define the input shape of a DL operator. Together
with the declared input size, the initial seed can be concretized. To
generate more test inputs, we implement three mutation strategies
to generate new test inputs by adding precision perturbations to
the candidate input. Meanwhile, we introduce testing preparation
considering the variable finite-bit representation characteristic for
DL operators. To further improve its efficiency, we also implement
three strategies to guide the testing process. Predoo is designed
as a generic solution to the mentioned limitations in DL operator
testing. Therefore, Predoo is applicable for various DL operators,
requiring no injection to an operator’s source code.

Algorithm 1 explains the implementation details of Predoo. The
algorithm returns the maximum precision error ε that could be
found. To achieve this, there are some parameters required.

• shape defines the structure of the tensor input. e.g., if the
shape is defined as [1, 28, 28, 3], then input will be concretized
as a four-dimension tensor with the given shape. Since DL
operators can process input in different shapes, Predoo al-
lows the tester to declare the required shape.

• size defines the initial size of the seeds. Seeds are provided
as the original input in Predoo. The size parameter is used
to control the scale of seeds.

• tn defines the termination condition. Predoo keeps generat-
ing new inputs until the scale of executed test inputs reaches
the limitation given by tn.

• ops holds multiple instances for the same operator. Pre-
doo holds instances for the same operator using different
data types. e.g., conv2d(dtype=float16), conv2d(dtype=float32),
conv2d(dtype=float64).

• trans indicates the alternative format that the operator can
process. Some DL operators can process tensors of a different
format, e.g., conv2d can process tensors in both NCHW and
NHWC formats, trans helps transpose the original input to
the alternative format.

• strat indicates the guiding metrics during testing. We imple-
ment three strategies, i.e. random, l∞error , and l1error .

• op_params includes all other parameters required by the
operator. Since these parameters are of primitive data types
that can be tested with existing techniques, Predoo does not
generate inputs for these parameters. Instead, op_params is
provided with concrete values.

• mode has two optional values, i.e., input_mode and op_mode.
It determines which component the current task focuses on.
The input_mode changes precision of the input to the op-
erator, while the op_mode changes operator precision.
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Figure 1: Predoo workflow

Among these parameters, size, tn are basic parameters to run
the fuzzing task. To adapt fuzzing to DL operators, we introduce
textitshape, ops, trans and op_params. We do not detail the above
parameters because they will not change during the execution. strat
and mode control the fuzzing process. We try to figure out their
influences in the following section.

3.1 Seed Maintenance
Seeds are randomly generated in the set S of limited size size as
initial test inputs. Since most DL libraries use multi-dimensional
array [19] to represent tensors, we analyze tensors in this data
format and will not talk about other representation methods like
multi-linear maps [28]. Predoo requires external knowledge on
the shape of the input to concretize the initial values in the test
set S , e.g., shape = [1, 28, 28, 3]. Each seed is a shaped-array of
floating-point samples from the standard normal distribution with
the given shape. Each value inside a tensor input is floating-point
values randomly generated. Without any prior knowledge about
the DL operator under test, each value keeps the same probability
of being picked.

With the provided parameter size, Predoo can generate an initial
fixed-size test input set. When loaded into the corpus, these seeds
become the original inputs to generate new test inputs, which will
be added to the test set T. In Predoo, picked inputs will not be put
back to the input corpus. Therefore, if the corpus becomes empty
before the termination, new seeds will be generated similarly.

3.2 Input Mutation
Mutation methods are responsible for generating new test inputs
to run the operator under test [25]. Effective mutation methods

contribute to generating valid inputs that expose higher precision
errors inside the operator. Formally, we generate new test input
by addding perturbations to the original input chosen from the
corpus, i.e. i

′

= i + δ . In Predoo, δ is implemented by declaring the
value range θ , then each element inside δ is in [0,θ ]. All values
in the perturbation tensor are identical. In this way, we try to
avoid coincidental impact from the introduced perturbation. δ is a
tensor with the same shape as the original input. The value range
of each element inside δ is limited. Therefore, the shape constraint
of the input tensor will not break, and the generated input is valid.
Predoo uses θ ∈ {1e-4, 1e-6, 1e-8} to implement mutation of different
magnitude. This setting ensures that the change to the input is
always small. All these values are smaller than the default tolerance
for float16, i.e., 1e−3, the lowest precision we experiment in the
evaluation.

Unlike random, mutation methods provide some heuristics in
what changes testers want to apply to the original input. δ can be
interpreted as a direction tensor. Therefore the newly generated
input tries to explore the surrounding space. This is helpful con-
sidering the Lipschitz continuity property of DL operators [31].
Besides, since all the values in the perturbation tensor are identical,
testers can control the direction of those changes.

3.3 Testing Preparation
Unlike conventional numerical programs, DL operator’s main char-
acteristic is that they are designed to use different precision to
process data of different precision. To quantify errors caused by in-
put precision changes or operator precision changes, Predoo allows
testers to specify the current testing task’s focus with mode. If in-
put_mode is activated, the generated test inputs will be converted
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Algorithm 1: predoo
Result: maximum error ε
Input: input shape: shape, seed_size: size, terminate_num:

tn, operator: ops, transpose: trans, strategy: strat,
parameters: op_params, mode: mode

1 count = 0, output_list = {} ;
2 T = init(shape, size) ;
3 corpus = load(T) ;
4 while min < tn do
5 candidate_input = choose(corpus);
6 mutate_input_list = mutate(candidate_input);
7 ordinary_params = random(op_params) ;
8 try:
9 switch mode :
10 case input_mode :
11 input_list = prepare(mutate_input_list) ;
12 op_list = ops ;
13 end
14 case op_mode :
15 input_list = mutate_input_list ;
16 op_list = prepare(ops) ;
17 end
18 default :
19 input_list = mutate_input_list ;
20 op_list = ops ;
21 end
22 end
23 output_list = execute(op_list, input_list,

ordinary_params) ;
24 error = relative_error(output_list, strat) ;
25 if ε < error then
26 T = load(input_list) ;
27 increase(count) ;
28 ε = error
29 end
30 catch Exception:
31 // record a crash ;
32 end
33 return ε ;
34 end

to different data types. More specifically, for any input i , it will be
converted to float16, float32, and float64. These prepared inputs will
be used to run the provided operator instances. We analyze the
impact of input precision changes on precision errors.

Similarly, the DL operator will be configured to run with differ-
ent data types when op_mode is activated. i.e., for any operator
P , the op_mode produces three operator instances running with
float16, float32, and float64 respectively. All these operator instances
will be used as P

′

to calculate the observed relative error. We also
study the impact of operator precision changes on precision errors,
considering the diverse usage scenario of DL operators.

3.4 Error Analysis
In previous subsections, we illustrate how Predoo works to gen-
erate new valid test inputs and implement precision changes on
the input or the operator. However, how a DL operator reacts to
such changes remains unclear. Besides, model developers may use
an operator multiple times in constructing a model, which gives
us the intuition of running the DL operator multiple times. We
try to demonstrate the infeasibility of threshold configuration for
different DL operators, which helps us explain why Predoo finds
higher precision errors instead of using a threshold for evaluation.
Therefore, we theoretically analyze how the error is propagated and
accumulated inside an operator on three categories of DL operators,
i.e., convolution operators, pooling operators, and other non-linear
operators.

Convolution operators. For simplicity, letK denote the kernel,
I denote the input, the two-dimensional discrete convolution can
be defined as follows.

C(i, j) = (K ∗ I )(i, j) =
∑
p

∑
q

I (i + p, j + q)K(p,q)

Let ϵ denote the absolute error on the input, where ϵ ≪ I , ϵ ≪ K ,
C̃(i, j) denote the actual value, then we have:

C̃(i, j) =
∑
p

∑
q
(I (i + p, j + q) − ϵ)(K(p,q) − ϵ)

= C(i, j) −
∑
p

∑
q
(K + I )ϵ +

∑
p

∑
q

ϵ2

≈ C(i, j) −
∑
p

∑
q
(K + I )ϵ

(1)

If a convolution operator is executed once, the difference between
the real value C(i, j) and the actual value S̃(i, j) is as follows.

C(i, j) − C̃(i, j) =
∑
p

∑
q
(K + I )ϵ

Since we do not change other parameters of the operator during
the testing preparation, i.e., p, q, K remain the same. If it runs n
times, we have:

Cn (i, j) − C̃1(i, j) ≈ (pq)nKnϵ

As n increases, comparing to the error ϵ on original input, the
error increases quickly. We can come to this conclusion for convo-
lution on other dimensions in a similar way. Thus, the preparation
stage is helpful in testing convolution operators.

Pooling operators. Let I denote the input,A denote the pooling
area. For max pooling, we have:

P(i, j) = max
(p,q)∈Ai, j

I (p,q)

Similarly, let ϵ denote the absolute error on the input, where
ϵ ≪ I , P̃(i, j) denote the actual value, then we have:

P̃(i, j) = max
(p,q)∈Ai, j

(I (p,q) − ϵ)

= max
(p,q)∈Ai, j

I (p,q) − ϵ

= P(i, j) − ϵ

(2)
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As we can conclude from Equation 2, the pooling operator does
not amplify the original error on the input. We can get similar
conclusions for the average pooling operator. The error propagation
scales linearly with the number of execution times. Although the
pooling operator also returns a tensor as output, which can be used
as an input for further iteration, the input change is of the pooling
operator is less sensitive than the convolution operator.

Other non-linear operators. We further investigate on several
common non-linear operators, e.g. ReLU, sigmoid, tanh, softmax.

ReLU . ReLU returns element-wisemax(x , 0). Let I denote the
input, x ∈ I , ϵx denote the correspondent error for value x, ˜ReLU (x)
denote the actual value, then we have:

Suppose ϵ > 0, then for x ≥ ϵ , we have:

˜ReLU (x) = x − ϵx = ReLU (x) − ϵx (3)

Similar to the max-pooling operator’s proof, the error scales
linearly with the number of execution times when x ≥ ϵx .

For x ≤ 0, we have:

˜ReLU (x) = 0 = ReLU (x)

We can conclude that the ReLU operator is not affected by the
error when x ≤ 0.

For 0 < x < ϵ , we have: ˜ReLU (x) = 0 = ReLU (x) − ReLU (x),
since x will not change in the execution, i.e. ReLU (x)− ˜ReLU (x) = x .
The error also scales linearly with the number of execution times.

In conclusion, the ReLU operator is either not affected by the
error or linearly affected by the execution times.

Sigmoid. Let I denote the input x ∈ I , the sigmoid operator can
be described as follows.

Siд =
1

1 + e−I
Similarly, let ϵ denote the absolute error on the input, where

ϵ ≪ I , ˜Siд denote the actual value, then we have:

˜Siд = Siд(x) + Siд
′

ϵ

= Siд(x) + Siд(x)(1 − Siд(x))ϵ
(4)

We can conclude that the difference between the real value and
the actual value grows linearly as the time of execution increases
for the sigmoid operator.

Tanh. Let I denote the input, x ∈ I , the tanh operator can be
described as follows.

T (x) =
ex − e−x

ex + e−x

Similarly, let ϵ denote the absolute error on the input, where
ϵ ≪ I , T̃ denote the actual value, then we have:

T̃ (x) = T (x) +T
′

ϵx

= T (x) + (1 − (T (x))2)ϵ
(5)

Since 1 − (T (x))2 is a constant when x is given. Thus the tanh
operator is linearly affected by the execution times.

Softmax. The description of the softmax operator is shown as
follows. Similarly, let ϵ denote the absolute error on the input,

where ϵ ≪ I , ˜So f t denote the actual value. Since deriving So f tmax
is more complicated, we prefer to give the conclusion for it directly.

˜So f t(x) = So f t(x) + So f t
′

ϵx (6)

where

So f t
′

(x) =

{
So f txi (1 − So f tx j ),xi , x j

−So f tx j So f txi ,xi = x j

Since So f t
′

ϵx is a constant when I is given, thus the softmax
operator is linearly affected by the execution times. Following such
practices, the precision error is accumulated, which helps explain
the operator’s precision impact on models. According to the error
analysis, the error inside the convolution operator grows as n in-
creases. For the pooling operator and other non-linear operators,
the error scales linearly with the number of execution times. More-
over, the finite representation bit of floating-point numbers makes
it more difficult to config an appropriate threshold.

3.5 Guiding Strategy
To improve test efficiency, heuristic algorithms are employed, and
intermediate testing inputs are collected. We introduce three guid-
ing strategies in Predoo, i.e., random, l∞ error, l1 error. Like random
testing, the random strategy provides no guidance in the input
generation, i.e., each input is independent of others. To employ
heuristic-guided strategies, we introduce error-guided strategies.
More specifically, error is calculated by lnorm distance. Formally,
lnorm distance between tensor t and t ′ of the same shape can be
described as follows.

lnorm (t , t ′) = (Σdi=1(| |t
i − t ′i | |k ))(1/k )

l∞ error is measured by l∞ distance, while l1 error is measured by
l1 distance. The l∞ error strategy focus on the maximized element-
wise precision. Once a higher l∞ is triggered, the corresponding
input will be added back to the corpus. Mutation methods then help
explore the surrounding space of the candidate input. Because l∞
error focus on local errors inside the input, we propose l1 error to
implement the overall error estimation of the output.

3.6 Execution Evaluation
Similar to other numerical precision testing work, we measure
the relative error produced by operator instances. We define two
metrics to evaluate the current test input. If an input triggers an
exception or a crash, it will be recorded as an operator defect.
Corresponding inputs and the found precision error are saved for
further analysis by library developers. However, in precision testing,
we do not always run into such exceptions, i.e., an explicit oracle.
We also want to catch smaller changes reflected by the output, i.e.,
precision errors, an implicit oracle.

Outputs produced by inputs and operators produced by testing
preparation are used to approximate the implicit oracle. Similarly,
we record element-wise precision to measure the errors. Predoo
works to find the maximum precision errors during the execution.
Therefore, the measured precision error will not be directly used to
evaluate the quality of an operator.

406



ISSTA ’21, July 11–17, 2021, Virtual, Denmark Xufan Zhang, Ning Sun, Chunrong Fang, Jiawei Liu, Jia Liu, Dong Chai, Jiang Wang, Zhenyu Chen.

4 EVALUATION
To evaluate the effectiveness and efficacy of the proposed approach,
we implement our approach in a tool named Predoo2. Two baselines
were selected in the evaluation.

1) Built-in threshold. The built-in threshold is the threshold
TensorFlower declared in the source code when testing a
DL operator. We compare the error found by Predoo with
the build-in error threshold to evaluate the ability to find
precision errors.

2) CRADLE3, the state-of-the-art tool to locate error operators
in DL libraries. Since the source code is not available, we
implement our copy of it following the introduced technical
approach. CRADLE is a state-of-the-art tool in testing DL
libraries. It performs cross-implementation inconsistency
checking and intermediate output analysis on DL models
to detect defects in DL operators. We compare Predoo with
CRADLE to evaluate the ability to locate operator defects.

4.1 Experimental Setup
We run the experiment on two workstations. One is a GNU/Linux
System with Ubuntu 20.04. It is equipped with Intel Core CPU i7-
6580K (6 cores, 3.6GHz), NVIDIA Corporation GP102 GPUs, and
64GB RAM. The CUDA version is 10.2, the Anaconda version is
5.2.0, and the Python version is 3.6. The other is a Windows System
withWindows 10 2019. It is equipped with Intel Core CPU i7-9570H
(6 cores, 2.6GHz), and 16GB RAM. The Anaconda version is 4.8.3,
and the Python version is 3.6.

We select seven operators from TensorFlow in the experiment,
including conv2d, norm, pooling, relu, sigmoid, softmax, and
tanh. We include operators from three released TensorFlow ver-
sions to avoid potential bias, i.e., TensorFlow 2.0.0, TensorFlow 2.3.1,
TensorFlow 2.4.0. TensorFlow is chosen for evaluation considering
its popularity. Also, operators we experiment with are widely used
to construct DL models. They share few similarities in functionality
and implementation.

Each operator is tested with 20, 000 inputs, i.e. tn = 20, 000. We di-
vide the test inputs into 20 groups according to chronological order
to simplify the error representation record. We record the largest
error of a group д as leд , and the largest error ε =max(le1, ..., le20).

4.2 Research Questions
The goal of the experiment is to answer the following research
questions:
RQ1 How input precision and computation precision impact DL

operators?
RQ2 How effective is Predoo at finding error-inducing inputs for

operators?
RQ3 Which guiding strategy ismore effective in generating higher

error-inducing inputs?
As mentioned in the previous section, DL operators can process in-
puts of different precision with different precision.RQ1 is designed
to figure out how their impacts. To quantify the performance of

2The source code of Predoo is available on Github, https://github.com/predoodl/predoo
3We implement our copy of CRADLE following the introduced technical approach
because the source code is not found/not available, https://github.com/predoodl/cradle

Predoo, we design RQ2. It is used to evaluate the efficiency and
efficacy of Predoo. Besides, three strategies are introduced with the
hope of improving the efficiency of error-inducing input generation.
We compare these strategies in RQ3.

4.3 Precision Impact
The input precision change is implemented by converting the input
value to the data type with a different bit length. More specifically,
we make use of the convert_to_tensor method provided in Tensor-
Flow to implement typecast. Figure 2a shows the distribution of
corresponding precision error caused by input precision changes.
For simplicity, we do not plot outliers in Figure 2.

(a) input precision changes (b) operator precision changes

Figure 2: Precision impact

As we can conclude, conv2d is most sensitive to input precision
changes, where the measured precision error ε ∈ [0, 3.2e−4]. soft-
max behaves best among all the observed operators, where the
measured precision error ε = 0. The impacts of input precision
changes on pooling and relu are similar, where the measured preci-
sion error ε ∈ [0, 1.0e−4]. Also, for norm and tanh, the measured
precision error ε ∈ [0, 3.5e−4].

To implement operator precision changes, we configure opera-
tor running with different data types. Figure 2b shows the corre-
sponding precision error distribution caused by operator precision
changes. Similarly, conv2d is the most sensitive to operator preci-
sion changes, where the measured precision error ε ∈ [0, 1.2e−3].
All operators are affected by operator precision changes. relu and
pooling perform better than other DL operators, where the mea-
sured precision error ε ∈ [0, 1.5e−4].

Besides, the maximum precision error triggered on each oper-
ator is recorded in Table 1. For the seven DL operators, operator
precision changes cause a higher error, especially for the conv2d
operator, where the triggered error is 3.56e−3. Considering the
error analysis result for each DL operator, operators containing
multiplication operands are more likely to trigger a larger precision
error when the operator precision changes.

Answer to RQ1: Operator precision changes trigger larger preci-
sion errors in the output, comparing to input precision changes.
conv2d is the most precision sensative operator, while softmax
performs best with respect to input precision changes.

4.4 Effectiveness of Predoo
We estimate the effectiveness of Predoo from two perspectives, i.e.,
precision errors it triggers and operator defects it exposes.

407



Predoo: Precision Testing of Deep Learning Operators ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 1: Largest error for each operator

input precision changes operator precision change
conv2d 2.84e-3 3.56e-3
norm 1.69e-4 2.53e-4
pooling 4.95e-4 4.95e-4
relu 7.84e-4 7.84e-4

sigmoid 1.22e-4 3.99e-4
softmax 2.28e-4 3.66e-4
tanh 1.52e-4 2.77e-4

Precision errors. An assumption we hold is that each DL oper-
ator under test should pass the test in the source repository, which
means the test inputs used by TensorFlowers cannot trigger preci-
sion errors that exceed the threshold. Therefore, we use the built-in
threshold, i.e., errors defined in the test code for each DL operator
from TensorFlow, as a baseline. Meanwhile, we collect the maxi-
mum precision errors founded by Predoo. Figure 3 shows the result
of the maximum precision errors found on each operator. Because
there is no testing code available in the TensorFlow repository for
the sigmoid and tanh operator, we mark the built-in threshold for
them as N/A.

conv2d norm pooling relu sigmoid softmax tanh
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Figure 3: Testing results for DL operators

As can be concluded, compared to the built-in baseline, Predoo
can trigger higher errors for all the DL operators under test. The
error found by Predoo is at least three times larger than the built-in
threshold. Meanwhile, we present a comparison between the test
input scale, and we also record the execution time of Predoo in
Table 2. As we run Predoo on operators from libraries of different
versions on both CPU and GPU, we use an interval to record the
time cost.

Predoo can produce many more test inputs to the DL operator
than the test inputs available in the built-in test scripts. Meanwhile,
Predoo takes no more than eight minutes to complete precision test-
ing tasks. Compared to existing DL library testing approaches like
CRADLE, Predoo outperforms these approaches in cost because no

Table 2: Comparison between Predoo and built-in test

Test inputs Predoo execution time
(seconds)Predoo Built-in

conv2d 20000 32 [268, 371]
norm 20000 48 [276, 434]
pooling 20000 4 [96, 158]
relu 20000 1 [81, 113]

sigmoid 20000 N/A [71, 105]
softmax 20000 1 [68, 106]
tanh 20000 N/A [77, 107]

Table 3: Result of CRADLE

MNIST+LeNet VGG-16+Cifar-10
training time 10min 60-120min
CRADLE 10s 30s

operator
conv2d
pooling
...

conv2d
pooling
norm
...

problem N/A N/A

extra time is required to perform model training and intermediate
state extraction. Though a pre-trained neural network can save the
training time, it could be difficult for uncommon DL operators to
prepare such pre-trained models. In our experiment, we experiment
CRADLE on two models, i.e., LeNet with MNIST and VGG-16 with
CIFAR-10. Time cost for the whole process is shown in Table 3.
LeNet and VGG-16 are constructed and tested in our experiment.
For simplicity, we list operators also tested in Predoo in the table.
Other operators are neither studied in our experiment nor reported
buggy by CRADLE. As we can see, the extra time cost is expensive
for CRADLE, especially when the model becomes complex, e.g.,
for VGG-16, more than one hour is required to finish the training
task on GPU. Besides, CRADLE fails to expose precision errors for
the conv2d operator in analyzing the intermediate output, while
Preoo succeeds in finding larger precision errors than the built-in
threshold provided by TensorFlowers.

Operator defects. Operator defects can lead to execution ex-
ceptions during the testing. They work as explicit oracles when
testing DL operators, and such defects are considered more severe
than precision error. Predoo can also detect operator defects in
DL operators. In the experiment, we find and report two operator
defects to the library developers. CRADLE cannot find these defects
because DL models fail to call these APIs.

The first defect we come across is that we fail to run the norm
operator in TensorFlow 2.0.0. The operator call throws the Valid
device NotFoundError. While the norm operator in TensorFlow
2.3.1 and the norm operator in TensorFlow 2.4.0 do not throw any
exceptions. According to the response from TensorFlowers, it is a
known issue that is fixed in newly released versions.

The second defect we run into is that the conv2d operator fails
to process tensor input in NCHW format. According to the de-
scription, conv2d should support both NHWC and NCHW format.
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However, when we use a input that is transposed from NHWC
format to NCHW format with trans, it throws UnimplementedError
or InvalidArgumentError when value of op_params changes. It is
confirmed by TensorFlowers to be an API-related bug. The problem
remains in the latest release TensorFlow 2.4.1, and they are still
working on the solution.

Answer to RQ2: Predoo can significantly expose precision errors
inside DL operators, and the errors found are more than one order
of magnitude larger on average. Predoo outperforms CRADLE
in locating operator errors in time cost. Besides, Predoo can also
expose API-related bugs when testing DL operators.

4.5 Strategy Comparison
To better evaluate the strategies we introduced in Predoo, we exper-
iment on testing these DL operators. We use each of the introduced
strategies to test operators from TensorFlow of different versions
on both CPU and GPU. In this comparison, we treat random as the
baseline as there is no guidance.

Figure 4 shows the result, l∞ error and l1 error performs better
than random in triggering precision error for the conv2d and relu
operator. However, for other operators, the performance of these
strategies is similar.
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Figure 4: Testing results with different strategies

Therefore, we conduct a more detailed investigation on strat-
egy impact on precision errors by analyzing the error distribution.
Figure 5 shows the result. Similarly, outliers are not plotted in this
figure. For all DL operators, random generate lower error-inducing
inputs, while l1 error performs a little better than l∞ error.

After analyzing the data, we put forward a possible explanation.
Because random is implemented with no guidance in test input
generation, it is difficult to hit the larger error-inducing inputs. As a
result, if a larger error can be triggered, l∞ error and l1 error perform
better in guiding the exploration of the input space. Meanwhile,
considering the Lipschitz continuity property hold by DL operators,
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Figure 5: Error distribution with different strategies

l∞ error and l1 are more likely to hit larger error-inducing inputs.
Although the error distribution of random is smaller than other
strategies, it triggers competitive precision error because there is
sufficient test data.

Answer to RQ3: l∞ error and l1 error are more effective than
random in guiding the generation of larger error-inducing inputs.
As random can achieve competitive performance in five out of
the seven tested operators, we think random is also helpful for
operators with smaller precision errors.

5 DISCUSSION
In this section, we discuss the practices of enterprise collabora-
tors in Huawei and explain the usefulness and the limitation of
Predoo. When locating causes of large precision error inside DL
operators found by Predoo, library developers in Huawei found
error-inducing practices. A typical example is that to achieve faster
computing performance, they reduced the iteration times when
applying Newton’s method for approximation. Consequently, the
implementation failed to converge to the root and produce large
precision errors. They hold the opinion that industrial library devel-
opers widely adopt such practices in implementing and optimizing
DL operators. Unlike existing numerical programs, DL operators
are expected to run on various devices with different finite-bit rep-
resentations. In addition to exceptions and crashes, precision errors
are worth noting. In Predoo, we design and implement fine-grained
precision error evaluation for DL operators. With the high precision
error found by Predoo, library developers can review and optimize
the operator’s implementation. Besides, Predoo can also trigger
API-related defects in operators.

Since Predoo focuses on exposing precision error inside DL op-
erators, it also has limitations. Suppose Predoo reports no precision
error. In that case, we cannot conclude that the DL operator is well
implemented because it could also be that the operator’s implemen-
tation fails to react to the changes in precision.
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6 THREATS TO VALIDITY
In our experiment, we selected seven widely used DL operators
in building DL models. Besides, according to the implementation
of how these operators process inputs, they can be divided into
different categories, i.e., convolution, pooling, and non-linear opera-
tors. All these operators are widely used in constructing DL models.
Meanwhile, Differences in their functionality and implementation
help ensure diversity. Therefore, we can prove the applicability of
Predoo. Besides, Predoo is adopted by our enterprise collaborators.
Predoo does not require any prior knowledge about the operator.

The experiment is conducted on two devices to avoid any inher-
ent bias brought by the environment. When studying the impact
of input precision and operator precision changes, we use error
distribution instead of the maximum precision error to prove its
soundness. Consider the type-variable characteristic of DL oper-
ators. We investigate how precision changes in the input and the
operator impact the output. To avoid any haphazardness, we col-
lect different operators from TensorFlow 2.0.0, TensorFlow 2.3.1,
and TensorFlow 2.4.0. We compare the precision error found by
Predoo against the built-in error threshold. We do not choose nu-
merical precision testing approaches because these approaches can
only process scala or small-size vectors. They cannot generate in-
puts in high dimensions. Besides, other existing work may employ
symbolic execution to execute more paths in the operator. How-
ever, most DL operators do not have many branches inside their
implementation. It is time-wasting to analyze its structure.

Although we do not select existing black-box testing approaches,
we implement random strategy as random testing for DL operators
instead as a baseline for black-box testing approaches. We evaluate
the effectiveness of the proposed strategies in finding precision
errors and prove that the l∞ error strategy and the l1 error strategy
performs better than random strategy. Besides, we compare Predoo
with the state-of-the-art DL library testing approach, CRADLE. The
experimental result shows that Predoo can expose precision-related
errors with less time required.

7 RELATEDWORK
7.1 Numerical Testing
From the perspective of software testing, absolute error and relative
error help check against the bound. Intuitively, if more exceptions
or a larger error can be triggered and monitored during execution,
the testing approach is considered more promising in exposing po-
tential defects. To predict the stability of a floating-point program,
Bao [4] detects possible places where an error becomes substan-
tially inflated with an appropriate threshold. Barr [6] proposes a
symbolic execution approach to detect floating-point exceptions.
Bagnara [3] presents a symbolic evaluator for numerical program
paths. Although these approaches could be effective, they deal with
operands for the scalar. Guo [12] extends symbolic execution to test
matrix in FPGen. However, it requires extra knowledge about the in-
put specification. Chiang [8] treats input generation as a searching
problem and implements a binary guided heuristic search algorithm
to find larger error-inducing inputs, which focuses on operators
that process primitive data types. To detect numerical bugs in DL
models, Zhang [42] conducts static analysis for detecting numerical
bugs at the architecture level.

Existing testing techniques could be difficult to apply to DL
operators. Implementation of these operators usually does not have
many branches, making it meaningless to explore paths. The high
dimension of tensors adds to the complexity of space searching
exponentially, making input range division not applicable.

7.2 DL Library Testing
DL library testing focuses on potential defects inside DL libraries,
making it different from deep neural network(DNN) testing. Exist-
ing DNN testing techniques [29] [37] treat a DNN together with
its underlying DL libraries as a whole, i.e., they cannot distinguish
model defects from library defects. As a result, libraries’ defects will
be introduced to the trained models and impact their performance,
which could further mislead model repairment.

Islam conducted a comprehensive study on DL bug characteris-
tics and discussed the significant effects of bugs in [15]. Researchers
begin to realize the importance of investigating DL libraries. Jia [17]
reported that major reported bugs reside in DL algorithms and their
interfaces, about 11.79% and 26.42%, respectively. Nejadgholi [26]
conducts an empirical study to figure out how researchers and
practitioners approximate the oracle when testing deep learning
libraries. To identify and locate such defects, Pham [30] proposes
a cross-backend validation approach to trace operators that cause
inconsistent behaviors in the model output. With the help of high-
level libraries like Keras [11], they can build models running on
different DL libraries for output comparison and error location.
Similarly, Guo [13] proposes Audee, which can also detect potential
defects introduced in weights. Audee makes use of multiple DL
libraries to implement consistency checks. However, we do not use
Audee as a baseline because it checks library-irrelevant model de-
fects in weights and parameters compared to CRADLE. Therefore,
we select CRADLE, a library testing tool for comparison, although
it is one year older. Also, Wang [35] proposes a series of mutation
rules in LEMON to build DL models on different frameworks.

Different from existing DL library testing work, Predoo focuses
on finding larger error-inducing inputs. Meanwhile, we do not
require operators from different libraries because the same operator
with a different precision can estimate the error.

8 CONCLUSION
In this paper, we propose Predoo, a precision testing approach to
detect operator defects. To the best of our knowledge, Predoo is the
first precision testing work for DL operators. Predoo implements a
fuzzing-based approach is implemented to generate sufficient test
inputs. Besides, expert knowledge is required to specify the accept-
able error threshold. Predoo transfers the error-bound estimation
problem to a searching problem to solve the problem, i.e., finding
the maximum precision error triggered by test inputs. To evaluate
its effectiveness, we conduct an experiment on seven different DL
operators from TensorFlow.

Our result shows that Predoo can expose precision errors in-
side DL operators effectively. Also, Predoo can expose API-related
defects in operators. The proposed guiding strategies generate error-
inducing inputs, including ł∞ error-guided input generation and l1
error-guided input generation strategy, which are more effective in
generating higher error-inducing tensor inputs.
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