
Service Call Chain Analysis for Microservice Systems 1203

*Corresponding Author: Qing Wu; E-mail: wuqing@nju.edu.cn

DOI: 10.53106/160792642022112306004

Service Call Chain Analysis for Microservice Systems

Zhiqiang Hao1, Xufan Zhang1, Jia Liu1, Qing Wu2*

1 Software Institute, Nanjing University, China
2 Business School, Nanjing University, China

leetguai@163.com, xufan.zhang@outlook.com, liujia@nju.edu.cn, wuqing@nju.edu.cn

Abstract

Industrial practitioners widely adopt the microservice

architecture to build applications. An application with

microservice architecture can be composed of a set of

individual services. Although microservice can improve the

scalability of a system by isolating services, the complexity

and difficulty of defect detection and analysis grow. High

verification cost, a long feedback cycle, and high

communication cost pose challenges to the maintenance of

microservice systems. To address the problem, we propose a

call chain tracing and analysis approach designed for the

microservice architecture. To evaluate its effectiveness, we

implement our approach as a plugin, namely Cam, to monitor

and analyze exceptions by tracing call chains. Currently, Cam

is packaged as a maven plugin for applications using Spring

Cloud, which is an opensource microservice framework for

Java programs. We experiment it with a microservice system

to demonstrate its availability. The result shows that Cam can

help software engineers understand the workflow of a service

call and locate potential defects.

Keywords: Call chain tracing, Microservice, Exception

analysis

1 Introduction

Microservice systems are characterized by implement-ing

the service-independent software architecture. Developers can

develop and maintain service nodes independently, which

realizes the decoupling of the system and improves the

scalability. When a node fails, other nodes are relatively

independent, improving the reliability of the system. The

existing analysis of microservices architecture is based on few

nodes [1]. However, in the microservice architecture, with the

expansion of the overall server function, the number of service

nodes increases, and the call relationship between services

becomes more complex. In consequence, it is hard to deal with

the relationship and evolution of service parts. The operation

status of the whole system will be challenging to grasp

because each microservice maintains its log separately. A

request often needs to be processed by multiple distributed

service nodes, making it challenging to locate the exception.

These problems bring significant challenges to the operation

and maintenance of the system.

It is difficult to grasp the overall system status under the

microservice architecture. Moreover, it is challenging to

locate the problem in the complex call relationship. To solve

the problems of microservice systems in reality, i.e., for the

sake of monitor of the overall system status and management

of exceptions, we need a call chain monitoring and analysis

approach for the microservice architecture systems [2].

Therefore, existing approaches cannot clearly analyze the

tracing process of an approach for the microservice call chain.

To propose a novel approach, we think about detecting

exceptions, locating them, and notifying operations and

maintenance developers of exceptions. More specifically, this

approach should implant span information, trace, and monitor

microservice nodes [3]. Then exception handling task requests

and push exception handling tasks are created.

This approach is described as using a tracer to solve

intercepting and tracing span information [4]. It first intercepts

the span information. According to the analysis of span

information, the continuous monitoring and exception

handling of the system state can be realized. After intercepting

and storing the data reasonably, this approach should provide

an intuitive interactive interface so that the overall situation of

the system and the specific situation of each node in real time

can be better understood. Moreover, visualizing those data

could help the operation and maintenance developers

understand the call relationship and find problems [5]. In

addition, when a system exception occurs suddenly, the

approach should locate the system exception and notify the

operation and maintenance developers. Ultimately, we need to

turn the results of our research into a tool. This tool was

evaluated and verified to be more available than other tools.

The main contributions are as follows:

1) we propose a call-chain-based analysis approach for

microservice systems. This novel approach can monitor the

overall status, locate and handle exceptions for microservice

systems.

2) the processes of solving problems correspond to each

function of the tool. The effectiveness of the approach is

verified by verifying the availability of functions.

2 Background

2.1 Microservice

The approach is aimed at the tracing, monitoring, and

processing of microservices. Since there is not a formal

definition for microservice, it is easy enough for you to call

whatever you do a microservice architecture. What you call

your system is relatively unimportant, but there are two crucial

feature descriptions: microservices are small, autonomous

mailto:liujia@nju.edu.cn

1204 Journal of Internet Technology Vol. 23 No. 6, November 2022

services that work together; loosely coupled service-oriented

architecture with bounded contexts [6].

A microservice is an independently deployable component

of bounded scope that supports interoperability through

message-based communication. Microservice architecture is a

style of engineering highly automated, evolvable software

systems made up of capability-aligned microservices [7].

Microservice can improve software delivery speed as

functional scope grows, because it has greater agility, higher

composability [8], improved comprehensibility, independent

service deployability and organizational alignment. And

microservice can maintain software system safety as scale

increases because it has higher availability and resiliency,

better efficiency, independent manageability and

replaceability of components, increased runtime scalability,

and more simplified testability. The ideal technological

environment for microservices features cloud infrastructure

[9],which facilitates rapid provisioning and automated

deployment. The use of containers is particularly useful to

enable portability and heterogeneity. Middleware for data

storage, integration, security, and operations should be web

API-friendly in order to facilitate automation and discovery,

and should also be amenable to dynamic, decentralized

distribution. The ideal programming languages for

microservices are API friendly as well and should be

functional while also matching the skill sets of your

organization. It is particularly useful to provide tools for

developers that simplify their tasks yet incorporate constraints

that encourage good operational behavior of their resulting

code.

2.2 Remote Procedure Call

To complete the call between microservices, RPC

(Remote Procedure Call) Protocol is needed. The mainstream

RPC frameworks include Alibaba’s Dubbo, Facebook’s thrift,

Hadoop’s Avro, etc.

The RPC provider maps an ID for each service. The

parameters of the service are sent through serialization and

received through deserialization. When starting, it registers

services with the registry according to the information

configured in the service publishing file server.xml, caches the

list of service nodes returned by the registry in local memory,

and establishes a connection with RPC server [10].

As shown in Figure 1, RPC client calls the service. When

starting, it subscribes the service to registry according to the

information configured in the service reference file client.xml,

caches the list of service nodes returned by the registry in the

local memory, and establishes a connection with RPC client.

Figure 1. Interaction diagram of role relationship of

microservice

The RPC client selects an RPC server from the list of local

cache service nodes based on the load balancing algorithm to

initiate the call.

When the RPC server node changes, the registry will be

cached in the local memory after sensing the change.

2.3 Call Chain

In the process of a call, the call information (time, interface,

level, result) between services is punctured into the log. Then

all the data of the points are connected into a tree chain, and a

call chain is generated [11]. The whole process of a request

call is connected in series through the call chain, and the

monitoring of the request call path is realized, which is

convenient for rapid fault location.

We often use call chains in microservice because the call

chain can well show the relationship between service nodes.

However, the call chain is complex, and when services run

into problems, it is difficult to locate. The overall system

performance and operation need to be clearly reflected to

adjust resources according to the actual situation. Therefore, it

is necessary to analyze and monitor the call chain of

microservices. The relationship data between microservices

can be analyzed, and then we can locate exceptions.

The tracing system analyses and processes the log

information [12] generated in the process, restores the

complete call process of end-to-end business execution, and

makes statistical analysis according to different dimensions;

In this way, the abnormal service calls can be identified, and

the abnormal services can be quickly analyzed and delimited.

At the same time, the system performance bottleneck can be

analyzed according to the data statistics [13].

All nodes of a service call are concatenated to form a call

chain. A request is a trace, and a call in a request is a span. We

can give the call chain a TraceID [14]. In addition to TraceID,

SpanID is required to record the calling parent-child

relationship. Each service records the TraceID and SpanID

attached to the request as the ParentID, and also records the

SpanID generated by itself. Each microservice records the

ParentID and SpanID, through which the parent-child

relationship of a complete call chain can be organized. To

view a complete call, just find out all call records [15]

according to TraceID, and then organize the whole call parent-

child relationship through ParentID and SpanID.

3 Approach

To realize monitoring the system’s overall situation and

locate the system exceptions, as shown in Figure 2, our

workflow mainly includes the following steps: First of all, we

need to intercept call data between node direction information.

Then we process the intercepted data into structured data

because structured data is easy to analyze exceptions and

display visually. Through data structure, entity data is

generated. After entity data is generated, microservices are

aggregated for granular data. Then we weighted out the

indicators needed for diagnoses, such as microservice health

and abnormal call risk level. We analyze the data to find out

whether the exception exists. If an exception exists, we need

to locate it. After pushing, the detected anomalies are handed

over to the operation and maintenance personnel for handling.

Service Call Chain Analysis for Microservice Systems 1205

If the exception does not occur, the target system is

continuously monitored.

Figure 2. Workflow of microservice call chain analysis

3.1 Data Interception and Capture

Call relationship data count for much in our analysis, but

the call relationship data might be simple or complex in a

service call [16]. In addition, the form of the call chain is

uncertain, which leads to difficulty in specifying the

relationship data. Different data requires different data

structures. Therefore, we need to design a reasonable data

structure for different scenarios to carry the call relationship

data and transfer the call chain information to the front end

completely, reasonably, and easily parsed to provide

convenience for subsequent data visualization.

So, in our approach, we need to configure some

components to intercept the call relation data, including the

path of this call, the ID of each calling node, and its parent ID

[17]. The root node has no ParentID. The path of this call can

be set to TraceID, which can be used to indicate which nodes

a call passes through in proper order. The ID of each calling

node and its ParentID can be set to SpanID and ParentID. The

service of each node will record the ParentID and SpanID,

through which the parent-child relationship of a complete call

chain can be organized. Span without ParentID becomes root

span, and the other span can be expressed recursively.

When an RPC call is initiated, the system puts TraceID

into the HTTP request and records the timestamp. When a

request reaches a node, the SpanID of the node will be

generated as the relative position of the node in the whole call

chain. Then, the intercepted call relation data is stored in the

database. Finally, we can query according to the API provided

by some distributed tracing systems. If there is a TraceID in

the log file, you can jump to it directly. Otherwise, you can

query the call relationship data based on attributes such as

service, operation name, label, and duration.

In the intercepted HTTP request [18], the specific request

parameters, request approaches, request results and return

values of the request need to be focused on, which are more

specific data information with smaller granularity. Trace and

other call chain information are recorded in the head of the

HTTP request in advance and stamped with a time stamp.

After it is intercepted by a program similar to the sensor, the

call, duration, and other call chain information are recorded.

The tracing function can be realized by comparing the time

stamp and other call chain information. But when intercepting

these data, we cannot simply take the data from the response

object. At the same time, we need to make a backup of data

and store it, which does not affect the completion of the

request itself.

There is the practical significance of intercepting the

specific content of each HTTP request because the operation

and maintenance personnel can monitor and analyze the call

chain-related functions of the system through the microservice

call chain and find that the abnormal rate of each service node

is too high, and then check the active call and passive call of

the node. It is found that an exception always occurs in a call

chain when the data request arrives at the node, resulting in

the failure of the full request of the call chain. At this time, the

operation and maintenance personnel will view the details of

the abnormal request under the node, including the request

parameters, the returned abnormal error information, etc., and

then judge the cause of the exception or seek the help of the

R&D personnel.

Besides, we should record the log file of each node [19].

But we cannot use the traditional log file format. We should

structure the log file to a certain extent. Structuralization helps

to optimize storage and improve query efficiency. Adding the

key value in the structured log file is helpful to distinguish the

Target system

（（ operation（（

Intercepter gets calls between

nodes direction information

（ Zipkin service)

Filter get call request details

[parameter + return result]

(activater)

Trace

Span1

Span2

......

Span

+traceId

+id

+time

+duration

......

Detail

+url

+head

+param

+time

......

1 1

Call success rate

Average

response time

......

Microservice node index

CPU utilization

Bandwidth

......

Machine state index

Weighted calculation

User defined

Microservice health

Abnormal call risk level

User

（（ Reference（（

Data

interception

and capture

Exception anlysis

Data processing

Instrumentation

of span

information

Data

organization

Data entity

generation

Data

aggregation

computing with

microservices as

granularity

1206 Journal of Internet Technology Vol. 23 No. 6, November 2022

log information and avoid querying too much log information

in the later query.

In brief, when the client sends a request to the server, cam

intercepts it and generates span information. After processing,

Cam will then hand over the request to the server for

processing. The span information includes TraceID, SpanID,

span type, response time, etc., and stores the span in the

database through other components.

3.2 Data Processing

After collecting the call chain relationship data, we need

to process and count the collected data. Multiple service nodes

cooperate to achieve the function, but some nodes have high

average access frequency, while others have low access

frequency. Similarly, the average access time of some nodes

is longer, and that of some nodes is shorter. Therefore, we pay

different attention to each node. For example, we can focus on

the node with a longer average access time, focus on the

statistics of the load pressure brought by this node, and

evaluate its impact on the whole system.

Based on our different attention to different nodes, we rank

these nodes to distinguish our attention to each calling node.

After sorting each node, the operation and maintenance

personnel can assign physical resources to the node according

to such characteristics and prioritize solving the performance

and abnormal problems of essential nodes. At the same time,

they ask the R&D personnel for better peak bearing capacity

in R&D design.

The module generates span information according to the

obtained records, and the index characteristics of span

information generated by each node will be different. The tool

can map this span information into symbolic information,

which is convenient for later visualization. For example, we

can associate node volume with the number of service calls

and associate node color with service health [20].

Since each node has its own business after the distributed

microservice of the service, we need to split the log file and

map it to each node [21]. Each log file corresponds to the

microservice of the target system one by one. If the R&D

personnel has located the log information to be viewed, they

need to obtain all the specific log file lists first and then obtain

the specific logs. Moreover, time information is often used as

the partition key of the log file, which is the first attribute to

filter when locating logs. Therefore, we can divide the log file

into the data according to the time information.

When we structurize the call chain data, span information,

and log file, we can monitor these data and carry out the

operation and maintenance of the system. For example, we can

get the call chain data in the past day, then get all the response

time of each node by traversing each span, and finally get the

average response time of each microservice node.

3.3 Exception Analysis

In the running phase of the system, span information is

collected into a collection. At the same time, we need to

restore the tree call through SpanID and ParentID. Then we

can find the specific exception by extracting span information

and comparing the exception table. The exception table can be

established according to the experience of developers, which

records the call parameters of standard exceptions [22].

In addition, according to the data processing, we get the

average response time and average number of calls per node.

In order to detect exceptions, we set thresholds for the

analyzed data. These thresholds include call times, call

success rate, average call depth, and other state information.

By comparing the analysis data stored in the database with the

threshold [23], we can find the exception in real-time.

After catching the above exception, we need to process the

exception data to facilitate the visualization of the interactive

interface. We process abnormal data into microservice

evaluation indicators. Microservice evaluation indicators

mainly include microservice node health and abnormal call

risk level. The health degree of the microservice node is

weighted by the health degree of node instance and the health

degree of the environment [24], representing the current health

state of the microservice node. Let H denote the health of the

microservice, He and Hn denote the health of the environment

and the health of the instance. Ke and Kn denote the weights of

environment health and instance health, respectively. Ki and

Kj denote the weights of the machine state index and the

weights of the node state index, respectively. Si and Sj denote

the machine state and the node state index. He is calculated by

weighting the machine state index. Hn is calculated by

weighting the node state index. Index calculation Calculate the

metrics of each microservice node every day through

scheduled tasks and store them in the database. The operator

can be described as:

𝐻𝑒 = ∑ 𝐾𝑖𝑆𝑖 (𝐾1 + 𝐾2 + ⋯ + 𝐾𝑖 = 1) (1)

𝐻𝑛 = ∑ 𝐾𝑗𝑆𝑗 (𝐾1 + 𝐾2 + ⋯ + 𝐾𝑗 = 1) (2)

𝐻 = 𝐾𝑒𝐻𝑒 + 𝐾𝑛𝐻𝑛 (𝐾𝑒 + 𝐾𝑛 = 1) (3)

The risk level of exception call is the same as the health

degree of the microservice node, but the indicators used are

different. The risk level of the exception call is equal to the

importance of the microservice node in the whole system. At

present, it is mainly calculated by the node call times, average

call depth, and the number of microservices related to the node.

It can also be calculated by the user-defined combination of

indicators.

Finally, if we catch an exception, we need to set up

different exception tasks according to different exceptions.

Exception handling tasks must have indicators such as

completion status and processing progress to indicate the

status of the exception handling task [25]. We will mark the

captured exception in advance in the call chain and establish

the corresponding exception handling task for the located

exception. To view the details of the corresponding exception

calls in the exception handling task, you can carry out the

operation and maintenance of the system. When the developer

completes the repair of the exception, the status of the

exception handling task will be changed to complete. At this

time, the system will ask the user to fill in the exception

handling task feedback report and create the exception task

feedback to store in the database.

3.4 Exception Feedback

When the tool analysis determines the abnormality, it

needs timely feed back to the operation and maintenance

personnel. We mainly carry out exception feedback from two

Service Call Chain Analysis for Microservice Systems 1207

aspects: real-time interface update and exception message

notification [26].

After processing the relational data, the tool generates

visual charts such as the ranking chart and the line chart. These

charts together constitute the monitoring page of the system.

The monitoring page mainly presents the data chart of the

target system to users, mainly describes the real-time data

amount and change trend of the service node’s access times,

the number of call chains, and other information in a period by

a data line chart, statistical ranking, and other ways, to provide

the data basis for operation and maintenance, data analysis and

other work.

The monitoring panel presents the data by the statistical

chart, and we can quickly understand the operation of the

target system from the perspective of crucial data. At the same

time, the front end also presents the data in a directed graph.

We can understand the system from the perspective of service

nodes. The advantage of this is to show all nodes in a graph,

which constitutes the global call graph page of the system. The

page shows the global call diagram of all service nodes of the

target system in the way of service node as directed graph node

and the call relationship as the edge. The number of calls is

associated with the node volume. The node color is related to

the service health level, which reflects the overall and local

operation relationship of the target system.

When a vital exception suddenly occurs, we hope that the

tool can push messages timely. These messages should at least

be displayed on the interactive interface. At the same time, the

relevant person in charge can be informed through the WeChat

push or email push. After receiving the exception push, we can

create our own exception handling task or directly use the

default exception handling task. The default exception

handling task should be automatically created by the tool and

pushed by the tool.

In order to facilitate maintenance and repair by the

operation and maintenance personnel, we hope that the tool

can click specific node requests in the expanded call chain.

The tool will expand the specific span information and HTTP

request details of the node request.

4 Threats to Validity

Putting the generated span information into the request

will invade the code. First, the intrusive code increases the

monitoring resource consumption, resulting in a certain

request delay. Secondly, code intrusion may affect the security

of code.

Microservice monitoring often needs to generate APM

(application performance monitor) reports for report analysis.

Cam lacks the generation of APM report, so it lacks the

analysis of the time dimension.

5 Evaluation

In order to evaluate the approach, this approach is

implemented into a tool, then evaluate each module of the tool,

and evaluate the whole tool. The problem we want to solve

corresponds to the function of the module. Functions that

change for the same reason are grouped together to form a

microservice, and functions that change for different reasons

are placed in different microservices [27]. Through the

function division, the modules are divided.

This tool after division contains the call chain information

module, the HTTP request management module, the log

information module [28], the service evaluation module, the

task push module, and the exception management module.

Call chain list page loading, call chain details page loading,

exception handing task creation request, exception handling

task feedback request, microservice instance node creation

request, and microservice health index calculation request is

realized through these modules [29].

Cam focuses on tracing, monitoring, and exception

handling of the microservice call chain. Specifically, it should

display the list of service nodes in the call chain, display the

details of service nodes, evaluate the health of microservices,

create exception handling task requests, and provide push and

feedback of exception handling tasks.

To determine the timeliness and availability of the tool,

each module is tested. Some test cases are created to test

functions. Intercepting the test case of calling data tests

whether the system can accurately intercept and store the data

into the database when the service nodes of the target system-

call each other. Visual data real-time display of test cases, the

main test target system after the service node call, the system

can immediately provide the latest call relationship

information to users. The HTTP request data accuracy test

case mainly tests whether the time information of the

intercepted HTTP request data is consistent with the time

information of the intercepted call chain information data

when the request call occurs in the target system, and provides

us with the query function of the specific request data of the

call chain. Log information storage and acquisition test cases,

the main test is that the tool can store the log information

correctly as log files in MongoDB through the provided

information storage interface [30]. All users can query the log

information accurately through the log query page. The

microservice node test cases test whether we can adequately

perform the creation of the microservice node instance.

Service evaluation information query test case is used to verify

whether users can normally query the health-related indicators

of microservice nodes and the risk level related indicators of

exceptional calls. Modifying push related information test

case is used to verify that users can modify personal push-

related information properly. Creating push task test cases is

used to verify whether users can create push tasks typically.

The exception call information query test case is used to verify

whether the system can accurately load the corresponding

exception call information list when enter various query

conditions. The exception handling task creates a test case to

verify that we can create an exception handling task based on

a specified exception call, assign it to a specified developer,

and push it as we choose.

By using Postman and Fiddler interfaces to debug the

packet capture tool [31], the testers conducted 50 request

operations for specific functional interfaces such as system

call chain information management, HTTP request

management, log information management, service evaluation,

task pushing management, exception management. Test

whether the function of the interfaces is available, record

maximum and minimum response time, and count the average

response time of requests. Finally, these data are counted into

a table.

Through the evaluation of push functions, compare

whether the results of these functions are consistent with the

actual situation, verifying that Cam can monitor the system

1208 Journal of Internet Technology Vol. 23 No. 6, November 2022

conditions such as the call relationship of microservice system;

Through the evaluation of push function, compare whether the

results of these functions are consistent with the actual

situation, verifying that Cam can trace, locate and deal with

the abnormal conditions of a microservice system.

In this test, the Alibaba Cloud ECS cloud host instance is

deployed, and the target monitoring system is also deployed

and run on the Alibaba Cloud host. The server uses the

CentOS 8.0 system, 2-core CPU, 4G memory, and 40G solid-

state drive. Table 1 is the hardware configuration for the test

environment.

Table 1. Cloud server hardware and environment

configuration

Hardware item Remark

Operating system CentOS 8.0

CPU 2 cores

RAM 4G

SSD 40G

Quantity 4

Each server is installed with MySQL as the database, and

the target monitoring system uses three servers to distribute

microservice nodes. Table 2 is the software configuration of

the test environment.

Table 2. Software configuration of the test environment

Software item Remark

JDK Java8

Container service Docker

Database MySQL

The experimental results are shown in Table 3. Through

the test of those modules, the functions are evaluated,

verifying the effectiveness of the method.

The feedback time of the functions is within 3 seconds. 80%

of the users participating in the test are satisfied with the

feedback time, and 10% of the users say that the feedback time

of the tool still needs to be improved [32]. The test results

show that Cam can reasonably complete the purpose of

microservice tracing. Moreover, Cam’s feedback time is

neither too long for users to wait and feel bored nor too short

for users to have no response time.

To sum up, Cam can realize more functions and meet more

affluent requirements than other tools. This approach

effectively processes the call chain data, solves the problems

of monitoring the microservice call chain and the feedback and

processing of exceptions, and has achieved more effectiveness.

Cam is also within the tolerance of most users in terms of

efficiency and provides reasonable feedback time.

Table 3. Performance requirement test

Function Average response

time

Maximum response

time

Minimum response

time

Test result

Call chain list page

loading

1223.5 ms 2145.8 ms 821.3 ms success

Call chain details

page loading

1434.2 ms 1613.1 ms 1042.16 ms success

Exception handling

task creation request

634.1 ms 803.7 ms 512.4 ms success

Push task creation

request

541.3 ms 843.1 ms 453.6 ms success

Exception handling

task feedback request

624.8 ms 813.7 ms 422.4 ms success

Microservice

instance node

creation request

536.4 ms 764.9 ms 403.9 ms success

Microservice health

index calculation

request

1743.7 ms 2143.7 ms 1466.5 ms success

Compare Cam with the current mainstream call chain

monitoring product - SkyWalking, and compare their

instrumentation methods, performance loss, data types

collected, and service dependency graph display. Cam uses

invasive instrumentation, while SkyWalking uses bytecode-

enhanced non-invasive instrumentation. But SkyWalking uses

non-intrusive instrumentation to run additional monitoring

applications, which increases performance loss. Using

intrusive instrumentation can customize the type of data

collected, which is more flexible than non-intrusive

instrumentation. At the same time, SkyWalking needs to

generate APM reports, which also increases the performance

loss. Cam’s service dependency graph is simple and intuitive,

while SkyWalking displays all the collected information,

which is relatively complex. The comparison between Cam

and SkyWalking is shown in Table 4.

Service Call Chain Analysis for Microservice Systems 1209

Table 4. Cam vs SkyWalking

Product

Item

Cam SkyWalking

Instrumentation method invasive bytecode-enhanced

Performance loss low high

Data types collected customized stable

Service dependency graph

display

intuitive complex

6 Related Work

6.1 Call Chain Analysis

Google was the first to discuss call chain tracing

techniques [33], and it released the first distributed tracing tool,

namely Dapper [34]. The tracing system for Dapper’s

distributed services needs to record all the work done in the

system after a specific request. Dapper’s tracing architecture

is like a tree embedded in RPC calls, but not limited to this. In

the Dapper tracing tree structure [35], the tree node is the basic

unit of the entire architecture, and each node represents a

reference to span in the log file. Dapper uses trace to represent

a complete request call chain, and a single remote procedure

call is represented by span. At start and end times, Dapper uses

spans to represent parent-child relationships between nodes.

Tracing is done by implanting information such as SpanID

into threads and collecting span information.

Zipkin is an open-source project for Twitter based on

Google Dapper [36]. Zipkin also uses span and trace to

implement Dapper’s core functions. As an open-source

distributed tracing tool, Zipkin uses the approach of

intercepting requests to collect real-time call data from various

heterogeneous modules of the distributed system [37]. Zipkin

can only trace and monitor call chains, and it cannot complete

the functions of exception handling task creation and push, so

Zipkin has some limitations. But Zipkin supports tracing and

has high scalability, so our approach is extended based on

Zipkin.

Lan et al. [38] proposed a novel approach to obtain the

local composite service dependencies [39] and their

discontinuous dependencies through call chain analysis. This

approach divided service mining into four steps: data

aggregation, service dependency set aggregation counting,

service local dependency mining, and discontinuous

dependency mining. They thought these complex

dependencies could provide primary supporting data for the

dynamic deployment and adjustment of microservices.

6.2 Microservice Analysis

Ma et al. [40] pointed out three main tasks in microservice

testing, i.e., visualizing the dependency relationships between

microservices, detecting cyclic dependency references, and

improving the coverage of service tests. In order to achieve

these goals, construct a service dependency graph (SDG) to

collect all service invocation links [41]. Visual display SDG

so that users can collect all service dependencies for analysis.

Cortellessa et al. [42] aim at detecting and resolving

performance antipatterns by leveraging the traceable

relationship between monitoring data and architectural models.

They propose some approaches to identify and solve the

performance of microservice systems. These approaches

include collecting a more extensive set of metrics and

performance measures from the running systems, translating

refactoring actions into refactorings applied to a running

system.

Tianrui et al. [43] attempt to build an application of

microservice architecture in a battery monitoring system.

They made the following conclusions about microservices:

When calling each other within the service, the registry

provided by Eureka to the local area can complete load

balancing through feign component, which reduces the

pressure of a single server and ensures the stability of the

system. Therefore, the coordination relationship between

microservices is significant for the rational use of

microservice resources.

7 Conclusion

This paper proposes a call chain tracing approach designed

for the microservice architecture. We implement the approach,

namely Cam, to monitor and analyze exceptions by tracing

call chains. We experiment with a microservice system to

demonstrate its availability.

In our approach, we first need to intercept and capture data.

We mainly need to obtain two kinds of data: the HTTP request,

the log file. Second, we will deal with the intercepted data to

achieve structurally. Structured data is conducive to visual

display and conducive to monitoring the overall situation of

the system and finding abnormal positioning. After structuring

the data, we need to locate the exception. When we find and

locate the exception, we give the exception feedback from two

aspects: real-time interface update and exception message

notification. Then the operation and maintenance personnel

and developers can handle the exception handling task.

Our approach analyzes multi-dimensional data, such as

target system call relation data, specific request data, log

information data, etc. Data analysis obtains the overall running

status of all service nodes in the target distributed microservice

architecture system, the call chain information of specific

nodes, and the specific node request response information.

With the help of this approach, more complex system

operation and maintenance and exception handling can be

carried out for the target system of microservice architecture.

References

[1] P. D. Francesco, I. Malavolta, P. Lago, Research on

Architecting Microservices: Trends, Focus, and

Potential for Industrial Adoption, 2017 IEEE

International Conference on Software Architecture

(ICSA), Gothenburg, Sweden, 2017, pp. 21-30.

[2] Q. Huang, D. Zeng, Design of Distributed Microservice

Architecture Based on Spring Cloud and Docker,

Microcomputer Applications, Vol. 35, No. 6, pp. 98-101,

June, 2019.

[3] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, L.

Su, Graph-based Trace Analysis for Microservice

Architecture Understanding and Problem Diagnosis,

1210 Journal of Internet Technology Vol. 23 No. 6, November 2022

Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and

Symposium on the Foundations of Software Engineering

(ESEC/FSE 2020), New York, United States, 2020, pp.

1387-1397.

[4] H. Mi, L. Du, X. Jin, S. Wei, X. Sun, Q. Li, Research on

Tracking Technology of Service Call Chain Based on

Microservice Architecture, 2020 International

Conference on Virtual Reality and Intelligent Systems

(ICVRIS), Zhangjiajie, China, 2020, pp. 839-843.

[5] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, D. Ding,

Fault Analysis and Debugging of Microservice Systems:

Industrial Survey, Benchmark System, and Empirical

study, IEEE Transactions on Software Engineering, Vol.

47, No. 2, pp. 243-260, February, 2021.

[6] I. Nadareishvili, R. Mitra, M. McLarty, M. Amundsen,

Microservice Architecture, O’Reilly Media, 2016.

[7] D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N.

Mavridis, Microservice-based Iot for Smart Buildings,

2017 31st International Conference on Advanced

Information Networking and Applications Workshops

(WAINA), Taipei, Taiwan, 2017, pp. 302-308.

[8] T. Cerny, M. J. Donahoo, M. Trnka, Contextual

Understanding of Microservice Architecture: Current

and Future Directions, ACM SIGAPP Applied

Computing Review, Vol. 17, No. 4, pp. 29-45, December,

2017.

[9] D. Lu, D. Huang, A. Walenstein, D. Medhi, A Secure

Microservice Framework for Iot, 2017 IEEE Symposium

on Service-Oriented System Engineering (SOSE), San

Francisco, CA, USA, 2017, pp. 9-18.

[10] M. Schroeder, M. Burrows, Performance of Firefly RPC,

ACM SIGOPS Operating Systems Review, Vol. 23, No.

5, pp. 83-90, December, 1989.

[11] X. T. Jiang, Z. G. Hu, J. B. He, Call Chain Analysis for

Low Power Compile Optimization, Journal of Jilin

University (Engineering and Technology Edition), Vol.

39, No. 1, pp. 143-147, January, 2009.

[12] M. Macak, D. Kruzelova, S. Chren, B. Buhnova, Using

Process Mining for Git Log Analysis of Projects in a

Software Development Course, Education and

Information Technologies, Vol. 26, No. 5, pp. 5939-5969,

September, 2021.

[13] A. Husain, B. Kumar, A. Doegar, Performance

Evaluation of Routing Protocols in Vehicular Ad Hoc

Networks, International Journal of Internet Protocol

Technology, Vol. 6, No. 1-2, pp. 38-45, June, 2011.

[14] T. Wang, W. Zhang, J. Xu, Z. Gu, Workflow-Aware

Automatic Fault Diagnosis for Microservice-Based

Applications with Statistics, IEEE Transactions on

Network and Service Management, Vol. 17, No. 4, pp.

2350-2363, December, 2020.

[15] T. H. Buscher, T. J. Coutre, M. J. Franklin, B. D.

Freeman, W. E. Relyea, E. N. Shipley,

Telecommunication Network Arrangement for

Providing Real Time Access to Call Records, United

States patent US 5,506,893, April, 1996.

[16] D. Crié, A. Micheaux, From Customer Data to Value:

What is Lacking in the Information Chain? Journal of

Database Marketing & Customer Strategy Management,

Vol. 13, No. 4, pp. 282-299, July, 2006.

[17] J. J. Rodrigues, P. A. Neves, A Survey on IP‐based

Wireless Sensor Network Solutions, International

Journal of Communication Systems, Vol. 23, No. 8, pp.

963-981, August, 2010.

[18] B. S. Rawal, R. K. Karne, A. L. Wijesinha, Mini Web

Server Clusters for HTTP Request Splitting, 2011 IEEE

International Conference on High Performance

Computing and Communications, Banff, AB, Canada,

2011, pp. 94-100.

[19] J. H. Andrews, Y. Zhang, Broad-spectrum Studies of

Log File Analysis, Proceedings of the 2000

International Conference on Software Engineering,

ICSE 2000 the New Millennium, Limerick, Ireland, 2000,

pp. 105-114.

[20] C. Esposito, A. Castiglione, C. A. Tudorica, F. Pop,

Security and Privacy for Cloud-based Data

Management in the Health Network Service Chain: a

Microservice Approach, IEEE Communications

Magazine, Vol. 55, No. 9, pp. 102-108, September, 2017.

[21] S. He, J. Zhu, P. He, M. R. Lyu, Experience Report:

System Log Analysis for Anomaly Detection, 2016

IEEE 27th International Symposium on Software

Reliability Engineering (ISSRE), Ottawa, ON, Canada,

2016, pp. 207-218.

[22] A. Brogi, D. Neri, J. Soldani, A Microservice-based

Architecture for (Customisable) Analyses of Docker

Images, Software: Practice and experience, Vol. 48, No.

8, pp. 1461-1474, August, 2018.

[23] L. Qi, S. Meng, X. Zhang, R. Wang, X. Xu, Z. Zhou, W.

Dou, An Exception Handling Approach for Privacy-

preserving Service Recommendation Failure in a Cloud

Environment, Sensors, Vol. 18, No. 7, Article No. 2037,

July, 2018.

[24] J. Kang, J. Zhang, J. Gao, Improving Performance

Evaluation of Health, Safety and environment

Management System by combining Fuzzy Cognitive

Maps and Relative Degree Analysis, Safety Science, Vol.

87, pp. 92-100, August, 2016.

[25] B. S. Lerner, S. Christov, L. J. Osterweil, R. Bendraou,

U. Kannengiesser, A. Wise, Exception Handling

Patterns for Process Modeling, IEEE Transactions on

Software Engineering, Vol. 36, No. 2, pp. 162-183,

March-April, 2010.

[26] J. Wang, Y. Yang, T. Wang, R. S. Sherratt, J. Zhang, Big

Data Service Architecture: a Survey, Journal of Internet

Technology, Vol. 21, No. 2, pp. 393-405, March, 2020.

[27] L. Gou, Q. Chen, J. Liang, X. Liao, Technical Research

and Application Analysis of Microservice Architecture,

2019 International Conference on Computation and

Information Sciences (ICCIS 2019), Saudi Arabia, 2019,

pp. 806-813.

[28] H. Rubira, R. Voivodic, The Effective Field Theory and

Perturbative Analysis for Log-density Fields, Journal of

Cosmology and Astroparticle Physics, Vol. 2021, Article

No. 070, March, 2021.

[29] R. Gupta, S. Agrawal, Y. Yang, W. Dec, S. B. Ahmed,

Intuitive Approach to Visualize Health of Microservice

Policies, United States patent application US

15/298,102. April, 2018.

[30] C. Győrödi, R. Győrödi, G. Pecherle, A. Olah, A

comparative study: MongoDB vs. MySQL, 2015 13th

International Conference on Engineering of Modern

Electric Systems (EMES), Oradea, Romania, 2015, pp.

1-6.

Service Call Chain Analysis for Microservice Systems 1211

[31] A. Soni, V. Ranga, API Features Individualizing of Web

Services: REST and SOAP, International Journal of

Innovative Technology and Exploring Engineering, Vol.

8, No. 9S, pp. 664-671, July, 2019.

[32] Y. G. Hong, J. Huang, Y. S. Xu, On an Output Feedback

Finite-time Stabilisation Problem, Proceedings of the

38th IEEE Conference on Decision and Control,

Phoenix, AZ, USA, 1999, pp. 1302-1307.

[33] S. D. Mallanna, M. Devika, Distributed Request Tracing

using Zipkin and Spring Boot Sleuth, International

Journal of Computer Applications, Vol. 175, No. 12, pp.

35-37, August, 2020.

[34] M. Ghasemi, T. Benson, J. Rexford, Dapper: Data Plane

Performance Diagnosis of Tcp, Proceedings of the

Symposium on SDN Research, Santa Clara, CA, USA,

2017, pp. 61-74.

[35] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, S.

Matsuoka, Ninf-G: A Reference Implementation of

RPC-based Programming Middleware for Grid

Computing, Journal of Grid Computing, Vol. 1, No. 1,

pp. 41-51, March, 2003.

[36] H. Wang, W. Fang, A Trace Agent with Code No-

invasion Based on Byte Code Enhancement Technology,

2019 IEEE 10th International Conference on Software

Engineering and Service Science (ICSESS), Beijing,

China, 2019, pp. 405-409.

[37] S. Nedelkoski, J. Cardoso, O. Kao, Anomaly Detection

and Classification using Distributed Tracing and Deep

Learning, 2019 19th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing

(CCGRID), Larnaca, Cyprus, 2019, pp. 241-250.

[38] Y. Lan, L. Fang, M. Zhang, J. Su, Z. Yang, H. Li, Service

Dependency Mining Method Based on Service Call

Chain Analysis, 2021 International Conference on

Service Science (ICSS), Xi’an, China, 2021, pp. 84-89.

[39] M. R. Namjoo, A. Keramati, Analysing Causal

Dependencies of Composite Service Resilience in

Cloud Manufacturing using Resource-based Theory and

Dematel Method, International Journal of Computer

Integrated Manufacturing, Vol. 31, No. 10, pp. 942-960,

July, 2018.

[40] S. P. Ma, C. Y. Fan, Y. Chuang, W. T. Lee, S. J. Lee, N.

L. Hsueh, Using Service Dependency Graph to Analyze

and Test Microservices, 2018 42nd IEEE International

Conference on Computer Software & Applications,

Tokyo, Japan, 2018, pp. 81-86.

[41] S. Kaffash, A. T. Nguyen, J. Zhu, Big Data Algorithms

and Applications in Intelligent Transportation System: A

Review and Bibliometric Analysis, International

Journal of Production Economics, Vol. 231, Article No.

107868, January, 2021.

[42] V. Cortellessa, D. D. Pompeo, R. Eramo, M. Tucci, A

Model-driven Approach for Continuous Performance

Engineering in Microservice-based Systems, Journal of

Systems and Software, Vol. 183, Article No. 111084,

January, 2022.

[43] T. Zhao, D. Li, Application of Microservice Architecture

in Battery Monitoring System, Proceedings of 2019 3rd

International Conference on Mechanical and

Electronics Engineering (ICMEE 2019), Chongqing

City, China, 2019, pp. 32-36.

Biographies

Zhiqiang Hao received the B.E. degrees in

process equipment and control engineering

from Nanjing Forestry University, Jiangsu,

China, in 2020. He is currently working

toward the M.E. degrees in software

engineering from Nanjing University,

Jiangsu, China.

Xufan Zhang received the B.E. and M.E.

degrees in software engineering from

Nanjing University, Jiangsu, China in 2015

and 2017, respectively. He is currently

working toward the Ph.D. degree in

software engineering at Nanjing University.

Jia Liu received the B.S. degree in

computational mathematics, the M.S.

degree in information science, and the Ph.D.

degree in systems engineering from

Nanjing University, Jiangsu, China, in 1998,

2005, and 2012, respectively. He is an

Associate Professor with Software Institute,

Nanjing University.

Qing Wu received the B.S. degree in

science, the M.S. and Ph.D. degrees in

economy from Nanjing University, Jiangsu,

China, in 1998, 2003, and 2009,

respectively. She is an Associate Professor

with Business School, Nanjing University.

